Chemische Signalstoffe kontrollieren die FortpflanzungSex oder TodDiatomeen sind einzellige Mikroalgen, die aufgrund ihrer filigranen und reich verzierten mineralisierten Zellwand auch als Kieselalgen bezeichnet werden. Trotz ihrer mikroskopisch kleinen Zellen spielen diese Algen eine fundamentale Rolle für marine Ökosysteme und sind sogar zentrale Akteure bei der Aufrechterhaltung des Weltklimas. Nun ist es erstmals gelungen einen Sexuallockstoff dieser Algen zu isolieren. Diatomeen sind sowohl als isolierte Zellen im Plankton der Ozeane und Seen als auch in Biofilmen auf allen Oberflächen unter Wasser stark verbreitet und es wird davon ausgegangen, dass sie für ca. 20% der globalen CO2-Fixierung verantwortlich sind. Mit anderen Worten: Der Sauerstoff in jedem fünften unserer Atemzüge wird durch die Fotosynthese von Diatomeen produziert. Trotz dieser zentralen Bedeutung wissen wir noch verhältnismäßig wenig über diese Algen. Eine interessante Beobachtung, die die asexuelle Zellteilung von Kieselalgen betrifft, ist allerdings schon seit vielen Jahren bekannt: Aufgrund der starren mineralischen Zellwand können sich die Zellen nicht wie andere Mikroorganismen teilen. Diatomeen bauen vielmehr zur Vorbereitung der Teilung die neue Zellwand innerhalb der bestehenden Elternzelle auf. Da Kieselalgenzellen wie eine Petrischale mit überlappenden Schalenhälften aufgebaut sind, resultiert dieser Prozess darin, dass eine der beiden Tochterzellen kleiner als die Elternzelle ist (Abb. 1) [1]. Diese Fortpflanzungsstrategie führt dazu, dass die mittlere Größe von Diatomeenzellenpopulationen mit der Zeit abnimmt. Ab einer artspezifischen Minimalgröße sind die Zellen nicht mehr teilungsfähig. Für diese bleibt dann nur noch die Wahl zwischen sexueller Fortpflanzung oder dem Tod. Nur nach der Paarung kann eine neue große Initialzelle gebildet werden, die den Startpunkt für einen neuen Zyklus aus asexuellen Teilungen und sexueller Reproduktion bildet. Es ist nicht verwunderlich, dass ein derartig zentraler Prozess im Lebenszyklus unter strenger Kontrolle zahlreicher Faktoren steht, die die Wahrscheinlichkeit der erfolgreichen sexuellen Reproduktion erhöhen. In Zusammenarbeit mit dem Team von Prof. Wim Vyverman konnte meine Gruppe jetzt zeigen, dass zentrale Kontrollfaktoren chemische Signalstoffe sind, die nur unter klar definierten physiologischen und Umweltbedingungen von paarungsbereiten Zellen ausgesendet und wahrgenommen werden [2]. Diese Studien die zum ersten Mal zeigten wie Pheromone die Vermehrung von Diatomeen kontrollieren, wurden an der Kieselalge Seminavis robusta durchgeführt. Eine Alge, die in zahlreichen Biofilmen zu finden ist und die nicht zuletzt aufgrund ihrer guten Kultivierbarkeit in den letzten Jahren als Modellorganismus etabliert wurde.
Diprolin. Diese äußerst effektive Verbindung löst schon eine Anlockung der Zellen aus, wenn sie in Mengen von nur 20 Picomol pro Testpartikel gegeben wird. Wenn Pheromone Zellen locken Wir stellten fest, dass die Paarungsbereitschaft strengstens von der Größe der Zellen abhängt. Nur wenn eine kritische Größe von ca. 50µm unterschritten wird, differenzieren sich die sonst nicht zu unterscheidenden Zellen in zwei so genannte Paarungstypen aus, die man eventuell mit den Geschlechtern höherer Organismen vergleichen kann. Bringt man Zellen der beiden Paarungstypen zusammen, kann man durch mikroskopische Verhaltensanalyse zwischen anlockenden und angelockten Zellen unterscheiden. Die mobilen Zellen des einen Paarungstyps gleiten dabei durch Sekretion eines gelatinösen Materials gerichtet auf den Partner zu. Interessanterweise wirkte auch das Medium, in dem die anlockenden Zellen gehalten wurden, auf den Paarungspartner attraktiv. Dieser Befund legte nahe, dass bei den Prozessen chemische Signale, so genannte Pheromone, eine Rolle spielen könnten. Auch chemische Extrakte des Mediums der anlockenden Zellen waren attraktiv, was die Charakterisierung des Lockpheromons möglich machte.
Abb.1 Schematische Darstellung des Querschnitts von Diatomeenzellen (mit einmontierten Bildern der Algen) während der Zellteilung. 1) Elternzelle mit den überlappenden Zellwänden aus biomineralisiertem Silikat. 2) Bei der Zellteilung werden innerhalb der Elternzelle die neuen Zellwände angelegt. Nach der Teilung resultieren Tochterzellen, eine davon mit reduzierter Größe. 3) Erst wenn Zellen die kritische Größe unterschreiten, werden sie sexuell aktiv. Kandidatenmoleküle für Lockstoffe Durch die Weiterentwicklung von analytischen Techniken, die in der vergleichenden Metabolomforschung etabliert wurden, konnten erstmals Kandidatenmoleküle für Lockstoffe identifiziert werden [3]. Methodisch ist dieser Ansatz bemerkenswert, da so ein bekannter Schwachpunkt der bisherigen Suchen nach Signalmolekülen umgangen werden kann. Traditionell werden derartige Signale durch chromatografische Auftrennung und Testen der resultierenden Fraktionen identifiziert. Die aktive Fraktion wird dann weiter aufgereinigt, bis ein aktiver Reinstoff zur Strukturaufklärung erhalten wird. Bei der neuen Technik wird zunächst auf eine zeitraubende Fraktionierung verzichtet, stattdessen wird das Metabolom der pheromonproduzierenden Zellen erfasst. Durch Computeralgorithmen kann dieses komplexe metabolische Profil mit dem von Zellen verglichen werden, die kein Pheromon produzieren. Im Falle der Diatomee S. robusta konnten so Kandidatenmoleküle für Lockstoffe identifiziert werden, die nur im Metabolom der „rufenden“ Algen zu finden sind. Die in diesen Zellen hochregulierten Verbindungen wurden dann gezielt aufgereinigt und in biologischen Versuchen auf ihre Aktivität getestet. In der Tat war der am signifikantesten hochregulierte Metabolit dann auch das aktive Pheromon (das 2,5-Diketopiperazin di-l-prolyl diketopiperazin, im Folgenden „Diprolin“). Diese Verbindung ist äußerst effektiv und löst schon eine Anlockung der Zellen aus, wenn sie in Mengen von nur 20pmol pro Testpartikel gegeben wird. Der methodische Durchbruch ermöglichte so die Identifizierung des ersten Diatomeenpheromons – einer Verbindung, nach der bereits seit Jahrzehnten gesucht wurde.
Links: Zellen der Diatomee S. robusta (oval) finden sich zu Paaren zusammen und bilden Zygoten (rund). Nach Auxosporenbildung (Mitte) werden dann großeInitialzelle gebildet (Rechts im Vergleich mit einer kleinen paarungsbereiten Zelle). Quelle: J. Frenkel, FSU Jena. Paarfindung – ein komplexer Prozess Um den Paarungserfolg zu maximieren, ist die Pheromonbildung stark synchronisiert. Nur Zellen, die kleiner als die kritische Zellgröße sind, produzieren das Pheromon. Zusätzlich zur Regulation durch Zellgröße wird aber auch das Vorhandensein von potenziellen Paarungspartnern abgefragt. Die Investition in die Bildung des Lockstoffes erfolgt nämlich nur, wenn kleine Zellen des anderen Paarungstyps anwesend sind. Auch diese Kommunikation erfolgt durch ins Wasser freigesetzte Signale. Um das Maß der Regulation vollzumachen, erfolgen die gesamten Prozesse auch lichtreguliert. Erst ca. fünf Stunden nach Tagesanbruch beginnt die Pheromonproduktion und die damit einhergehenden Findungsprozesse werden initiiert. Interessanterweise ist in sich paarenden Kulturen auch ein rascher Abbau des Pheromons Diprolin zu beobachten. Die beiden gegenläufigen Prozesse der regulierten Pheromonproduktion und des Abbaus führen dazu, dass sich nur in wenigen Stunden ein Konzentrationsmaximum um die rufenden Zellen aufbaut. So kann es vermieden werden, dass die Paarungspartner durch gealterte Pheromonspuren in die Irre geleitet werden. Die Bedeutung einer solch komplexen multiplen Regulation wird deutlich, wenn man sich den Lebensraum der Alge vor Augen führt. S. robusta lebt in Biofilmen, die unter Umständen aus hochdiversen Artengemeinschaften gebildet werden. Nur wenn hier sichergestellt wird, dass mit äußerster Effizienz Paarungspartner aufgefunden werden, kann das Überleben in dem kompetitiven Umfeld garantiert werden. Die Pheromonchemie ist allerdings bei Weitem nicht die einzige Möglichkeit, mit der sich Diatomeenzellen im Wasser behaupten. Es ist vielmehr so, dass die Einzeller auch gezielt nach Erkennen von bestimmten Bakterien Verbindungen produzieren können, die gegen den Befall durch die Pathogene aktiv sind [4]. Auch Konkurrenten können im Sinne einer beeindruckend effektiv regulierten, kurz gepulsten Giftgasattacke dezimiert werden [5]. Es ist faszinierend zu sehen, wie selbst Einzeller eine komplexe chemische Sprache sprechen und verstehen können. Man kann derzeit nur spekulieren, welche Bedeutung solche elaborierten Kommunikationsstrategien bei der evolutiven Durchsetzung der Diatomeen spielen.
Literatur |
L&M 8 / 2013Das komplette Heft zum kostenlosen Download finden Sie hier: zum Download Der Autor:Weitere Artikel online lesenNewsSchnell und einfach die passende Trennsäule findenMit dem HPLC-Säulenkonfigurator unter www.analytics-shop.com können Sie stets die passende Säule für jedes Trennproblem finden. Dank innovativer Filtermöglichkeiten können Sie in Sekundenschnelle nach gewünschtem Durchmesser, Länge, Porengröße, Säulenbezeichnung u.v.m. selektieren. So erhalten Sie aus über 70.000 verschiedenen HPLC-Säulen das passende Ergebnis für Ihre Anwendung und können zwischen allen gängigen Herstellern wie Agilent, Waters, ThermoScientific, Merck, Sigma-Aldrich, Chiral, Macherey-Nagel u.v.a. wählen. Ergänzend stehen Ihnen die HPLC-Experten von Altmann Analytik beratend zur Seite – testen Sie jetzt den kostenlosen HPLC-Säulenkonfigurator!© Text und Bild: Altmann Analytik ZEISS stellt neue Stereomikroskope vorAufnahme, Dokumentation und Teilen von Ergebnissen mit ZEISS Stemi 305 und ZEISS Stemi 508ZEISS stellt zwei neue kompakte Greenough-Stereomikroskope für Ausbildung, Laborroutine und industrielle Inspektion vor: ZEISS Stemi 305 und ZEISS Stemi 508. Anwender sehen ihre Proben farbig, dreidimensional, kontrastreich sowie frei von Verzerrungen oder Farbsäumen. © Text und Bild: Carl Zeiss Microscopy GmbH |