Chemie
>
MarViRed: rotes Proteinleuchten ein- und ausschalten
MarViRed: rotes Proteinleuchten ein- und ausschaltenVirales Leuchten aus dem Meer
Spätestens seit der Entdeckung des grün fluoreszierenden Proteins aus der Qualle Aequorea gilt der Ozean als Quelle bunt leuchtender Proteine. Das Farbspektrum des Meeresleuchtens wird nun durch ein rot fluoreszierendes Etwa 71 % der Erdoberfläche sind von
Meeren bedeckt. Ein gigantisches Ökosystem, reich an vielfältigem Leben, aber auch an weitgehend unerforschten Regionen. Gerade diese Kombination macht die Ozeane zu einer attraktiven Spielwiese für Forscher. So sieht die Blaue Biotechnologie die Meere als viel versprechende Quelle für aktive Substanzen zum Einsatz in Medizin, Landwirtschaft, Umweltschutz oder Kosmetik. Der Begriff Blaue Biotechnologie mag die Farbskala der „klassischen“ Grünen, Weißen und Roten Biotechnologien erst seit Kurzem erweitern, erfolgreich praktiziert wird sie jedoch schon seit Jahrzehnten. Viren: Motoren der Evolution
Neben Quallen und Schwämmen stehen planktonische Organismen im Fokus der Blauen Biotechnologie. Zu Recht, wie der Fall des Cyanobakteriums Lyngbya majuscula zeigt. Dies erwies sich als wahre Fundgrube für die Forscher, die mehr als 200 bioaktive Substanzen wie Antibiotika und tumorinhibierende Stoffe nachwiesen. Bis dato von der Blauen Biotechnologie weitgehend unbeachtet, sind die kleinsten, zahlenmäßig dominierenden „Bewohner“ der Meere: Viren. In einem Milliliter Meerwasser tummeln sich zwischen 6 und 20 Millionen von ihnen. Es gibt Schätzungen, die von insgesamt etwa 1031 Viren in den Ozeanen ausgehen. Trotz ihrer geringen Größe führt ihr zahlreiches Vorkommen dazu, dass Viren nach den Prokaryoten die zweitgrößte marine Biomasse stellen. Viren gelten nicht als Lebewesen im eigentlichen Sinne. Sie verfügen über keinen eigenen Stoffwechsel und bestehen lediglich aus genetischer Information, umgeben von einer Schutzhülle. Zum Zwecke der Vermehrung befallen sie daher einen Wirt und kapern dessen Stoffwechsel. Sind neue Viren produziert, erfolgt deren Freisetzung – und damit in der Regel der Tod der Wirtszelle. Viren üben einen erheblichen Einfluss auf die Diversität ihres Ökosystems aus. Einerseits bestimmen sie die Sterblichkeitsrate mit, andererseits transferieren sie als „Shuttle“ genetische Informationen zwischen zwei Wirten. Schnelle Replikations- und hohe Mutationsraten machen Viren zudem zu kleinen Innovationsfabriken, in denen ständig Gene modifiziert bzw. neu „erfunden“ werden. Kommt es zum Austausch von genetischen Informationen mit dem Wirt, unterliegen diese im Virusgenom also quasi einer komprimierten Evolution. Im Ozean lässt sich dies bei Viren beobachten, die photosynthetische Cyanobakterien infizieren. Die als Cyanophagen bezeichneten Viren verfügen in ihrem Genom über eine Reihe „photosynthetischer“ Gene, die sich auch im cyanobakteriellen Wirt finden. Während der Infektion werden diese Gene abgelesen und so die Photosyntheseleistung und damit die Energieproduktion des Wirtes aufrechterhalten. Vergleicht man jedoch Phagen- und Bakterienversion, zeigen sich erstaunliche Unterschiede. So Lineare Tetrapyrrole: ungeahnte spektrale Weiten
In unserer Arbeitsgruppe an der Ruhr-Universität-Bochum untersuchen wir Phagenproteine cyanobakteriellen Ursprungs. So wurde von uns bereits der bemerkenswerte Reaktionsmechanismus des Phagen PebS in der Pigmentbiosynthese aufgedeckt. Das hierbei gebildete Pigment zählt zu den offenkettigen Tetrapyrrolen, die auch als Biline bezeichnet werden (Abb. 1). In Cyanobakterien sichern bestimmte Helferproteine die korrekte Anknüpfung der Biline an die Lichtsammelkomplexe [3]. Auch diese „Bilinshuttle“ kommen in Phagen vor und wurden durch uns erstmals näher untersucht. Im Gegensatz zu ihren cyanobakteriellen Verwandten weisen die Phagenproteine eine überraschende Eigenschaft auf: Bei Bindung des Bilins entsteht ein rot fluoreszierender Komplex, der von uns als MarViRed: ein potenzieller molekularer Schalter?
Neben der Eignung zum klassischen Fluoreszenzmarker verfügt MarViRed über die Möglichkeit, als molekularer Schalter eingesetzt zu werden. So ermöglicht es die reversible Bindung des Bilins in Abhängigkeit vom Faltungszustand des Proteins, die Fluoreszenz von MarViRed quasi „ein-“ oder „auszuschalten“. Dies könnte völlig neue Anwendungsgebiete wie das Echtzeitmonitoring von Prozessen wie Translation, Proteinfaltung oder sogar Infektionen |
L&M 1 / 2011Das komplette Heft zum kostenlosen Download finden Sie hier: zum Download Die Autoren:Weitere Artikel online lesenNewsSchnell und einfach die passende Trennsäule findenMit dem HPLC-Säulenkonfigurator unter www.analytics-shop.com können Sie stets die passende Säule für jedes Trennproblem finden. Dank innovativer Filtermöglichkeiten können Sie in Sekundenschnelle nach gewünschtem Durchmesser, Länge, Porengröße, Säulenbezeichnung u.v.m. selektieren. So erhalten Sie aus über 70.000 verschiedenen HPLC-Säulen das passende Ergebnis für Ihre Anwendung und können zwischen allen gängigen Herstellern wie Agilent, Waters, ThermoScientific, Merck, Sigma-Aldrich, Chiral, Macherey-Nagel u.v.a. wählen. Ergänzend stehen Ihnen die HPLC-Experten von Altmann Analytik beratend zur Seite – testen Sie jetzt den kostenlosen HPLC-Säulenkonfigurator!© Text und Bild: Altmann Analytik ZEISS stellt neue Stereomikroskope vorAufnahme, Dokumentation und Teilen von Ergebnissen mit ZEISS Stemi 305 und ZEISS Stemi 508ZEISS stellt zwei neue kompakte Greenough-Stereomikroskope für Ausbildung, Laborroutine und industrielle Inspektion vor: ZEISS Stemi 305 und ZEISS Stemi 508. Anwender sehen ihre Proben farbig, dreidimensional, kontrastreich sowie frei von Verzerrungen oder Farbsäumen. © Text und Bild: Carl Zeiss Microscopy GmbH |